Ενισχεία Ρ.Υ.: Γεωργίως Χ. Ουτραή

ΜΙΓΑΩΜΕ ΣΥΝΑΡΤΗΣΕΙΣ
Πηγή: Διάγραμμα. "ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΙΓΑΔΙΚΗΣ ΜΕΤΑΒΛΗΤΗΣ (Eisagωγή - Περιήγηση)
και Ασκήσεις" Γεωργίω Σ. Καραγιώνα.

Ως προς τον (αντίθετα για τα άλλα) πρώτον μέρος:

Ορθόλογοι: Υποθέσεις έτσι και το παρόν νομικό μηνιαίο σύνολο και ανάλογα... Αν εντός ένα κεντρικού μήνα απολήγει η ένας από τους J. Αν f είναι για σύγχρονη ορισθένη σε (1) τον J - [a₁, a₂, ..., aₙ] τότε η εξίσωσις έχει την μορφή:

\[
\frac{1}{2} \int J f(x) \, dx = \sum_{n=1}^{\infty} \text{Re} \{ a_n \} \text{Re} \{ f(x) \} a_n
\]

Ως τέλος ένας για το πιο ανυπόλογο αναφερόμενο το μηνιαίο συνολικό σύνολο στην περιοχή το το J - [a₁, a₂, ..., aₙ] θα είναι αφού γίνεται

ξεκίνηση.

Παράδειγμα 1. Να υπολογίσουμε το οριοθέτημα:

\[
\int_{-\infty}^{\infty} e^{-t} e^{it} \, dt
\]

όπου η είναι η ημερήσια περιοδική την οποία γίνεται το σημείο ο αρχικό νομικό 5.

Δίνει

Το ηπείρο η υπολογίστη το συνολικό εξορθοποιημένο είναι η μήκος της ανάδειξης.

\[
\begin{array}{c}
\text{Re} \\
\text{Im}
\end{array}
\]

\[
\begin{array}{c}
-5 \quad s \\
-6 \\
\infty
\end{array}
\]
Ο παρ. 1. Αρθρογραφούμε: γι' αυτό δεν θα τον αναφέρουμε τον Καθήγητά μας.

Δηλαδή, έχουμε:

\[e^{t-1} dt = \lim_{t \to 0} [\int_{2}^{0} \frac{e^{t-1} - 1}{2^t + 2} \, dt] \]

\[= \lim_{t \to 0} [\frac{1}{0} \left(e^{t-1} - 1 \right)] \]

οπότε εννοούμε το νοημερό το αναφερόμενο:

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = \lim_{t \to 0} \frac{1}{2^t + 2} \]

\[= \frac{1}{2^0 + 2} = \frac{1}{3} \]

\[\lim_{t \to 0} e^{t-1} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1}}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1}}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = \lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} \]

\[= \lim_{t \to 0} \frac{1}{2^t} \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t + 2} = 0 \]

\[\lim_{t \to 0} \frac{e^{t-1} - 1}{2^t} = 1 \]
ΑΣΧΗΛΕΙΑ ΓΙΑ ΛΥΣΗ:

1) Να υπολογίσει το ολοκλήρωμα

\[\int_{t^2}^{1} \frac{e^{-t^2}}{1 + t^2} \, dt \]

2) Ο λόγος έχει είναι η διάμετρος της περιφέρειας της σφαίρας και εκφράζεται συνεπάγως ότι \(x^2 + 16y^2 = 9 \).

3) Να υπολογίσετε το παραμέτρο οριζόντια στα μέσα των άλλων χαρακτηριστικών των άλλων γραμμών.

a) \[\int \frac{e^{-t}}{(2-t)(4t+5)} \, dt \]
3) \(\int \frac{e^t}{2^t+2} \, dt \) \(\gamma: \{ z: |z| = 2 \} \)

5) \(\int \frac{e^t}{(t-2)^3} \, dt \) \(\gamma: \{ z: |z| = 2 \} \)

7) \(\int \frac{\sin \alpha t}{t^2 + t} \, dt \) \(\gamma: \{ z: |z| = 3 \} \)

10) \(\int \frac{t^2 \sin \frac{1}{2}}{2} \, dt \), \(\gamma: \{ z: |z| = 1 \} \)

11) \(\int \frac{\arctan \frac{t}{2}}{t^2 - 4} \, dt \), \(\gamma: \{ z: |z| = 3 \} \)